Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication

Preliminary Exam — 4/16/2008 Michael Wolf

Color Scheme of Text

Original contribution

- Future work
 - Ongoing research
 - Proposed research

Combinatorial Optimization of Mat-Vec Multiplication

- Two main subtopics
- Serial matrix-vector multiplication
 - Reducing redundant operations
 - Dense relatively small matrices
- Parallel matrix-vector multiplication
 - Minimization of communication volume
 - Large, sparse matrices

Optimization of Serial Mat-Vec Multiplication

Based on reference element, generate code to optimize construction of local stiffness matrices

Can use optimized code for every element in domain

- Reducing redundant operations in building finite element (FE) stiffness matrices
 - Reuse optimized code when problem is rerun

Related Work

- Finite element "Compilers" (FEniCS project)
 - www.fenics.org
 - FIAT (automates generations of FEs)
 - FFC (variational forms -> code for evaluation)
- Following work by Kirby, et al., Texas Tech,
 University of Chicago on FErari
 - Optimization of FFC generated code to evaluate finite element matrices
 - Equivalent to optimizing matrix-vector product code

Matrix-Vector Multiplication

For 2D Laplace equation, we obtain following matrixvector product to determine entries in local stiffness matrix

$$\mathbf{S}_{i,j}^e = y_{ni+j} = \mathbf{A}_{(ni+j,*)}\mathbf{x}$$

where

$$\mathbf{A}_{(ni+j,*)}^{T} = \begin{bmatrix} \left(\frac{\partial \phi_{i}}{\partial r}, \frac{\partial \phi_{j}}{\partial r}\right)_{\hat{e}} \\ \left(\frac{\partial \phi_{i}}{\partial r}, \frac{\partial \phi_{j}}{\partial s}\right)_{\hat{e}} \\ \left(\frac{\partial \phi_{i}}{\partial s}, \frac{\partial \phi_{j}}{\partial r}\right)_{\hat{e}} \\ \left(\frac{\partial \phi_{i}}{\partial s}, \frac{\partial \phi_{j}}{\partial s}\right)_{\hat{e}} \end{bmatrix} \qquad \mathbf{x} = \det(\mathbf{J}) \begin{bmatrix} \frac{\partial r}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y} \\ \frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y} \end{bmatrix}$$
Element
independent

$$\mathbf{x} = \det(\mathbf{J})$$

$$\frac{\partial r}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial r}{\partial y} \frac{\partial s}{\partial y}$$

$$\frac{\partial s}{\partial x} \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial r}{\partial y}$$

$$\frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y}$$
Element
$$\frac{\partial s}{\partial x} \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\partial s}{\partial y}$$
dependent

Optimization Problem

Objective: Generate set of operations for computing matrix-vector product with minimal number of multiply-add pairs (MAPs)

$$y = Ax$$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} \mathbf{r_1}^T \\ \mathbf{r_2}^T \\ \vdots \\ \mathbf{r_m}^T \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{r_1}^T \mathbf{x} \\ \mathbf{r_2}^T \mathbf{x} \\ \vdots \\ \mathbf{r_m}^T \mathbf{x} \end{bmatrix}$$

Possible Optimizations - Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$r_2 = 1.5r_1$$

Possible Optimizations - Colinear Rows

$$\left[egin{array}{c} y_1 \ y_2 \ y_3 \ y_4 \ \end{array}
ight] = \left[egin{array}{cccc} 2 & 2 & 2 & 0 \ 3 & 3 & 3 & 0 \ 2 & 2 & 2 & 0 \ 5 & 5 & 5 & 8 \ \end{array}
ight] \left[egin{array}{c} x_1 \ x_2 \ x_3 \ x_4 \ \end{array}
ight]$$

$${\bf r_2} = 1.5{\bf r_1} \Rightarrow y_2 = 1.5y_1$$
 1 MAP

Possible Optimizations - Identical Rows

$$\mathbf{r_3} = \mathbf{r_1} \Rightarrow y_3 = y_1$$
 omaps

Special case when rows identical

Possible Optimizations - Partial Colinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r_4} = 2.5\mathbf{r_1} + 8\mathbf{e_4}$$

Possible Optimizations - Partial Collinear Rows

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 & 0 \\ 3 & 3 & 3 & 0 \\ 2 & 2 & 2 & 0 \\ 5 & 5 & 5 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r_4} = 2.5\mathbf{r_1} + 8\mathbf{e_4} \Rightarrow y_4 = 2.5y_1 + 8x_4$$
2 MAPs

Graph Model - Resulting Vector Entry Vertices

 Entries in resulting vector represented by vertices in graph model

Graph Model - Inner-Product Vertex and Edges

- · Additional inner-product (IP) vertex
- Edges connect IP vertex to every other vertex, representing inner-product operation

Graph Model - Row Relationship Edges

 Operations resulting from relationships between rows represented by edges between corresponding vertices

Graph Model - Edge Weights

Edge weights are MAP costs for operations

Graph Model Solution

- Solution is minimum spanning tree (MST)
 - Minimum subgraph
 - Connected and spans vertices
 - Acyclic

Graph Model Solution

- Prim's algorithm to find MST (polynomial time)
- MST traversal yields operations to optimally compute (for these relationships) matrix-vector product

Graph Model Results - 2D Laplace Equation

	Unoptimized	Graph	
Order	MAPs	MAPs	
1	10	7	
2	34	14	
3	108	43	60% decrease
4	292	152	
5	589	366	
6	1070	686	

 Graph model shows significant improvement over unoptimized algorithm

Graph Model Results - 2D Laplace Equation

	Unoptimized	FErari	Graph	
Order	MAPs	MAPs	MAPs	
1	10	7	7	
2	34	15	14	
3	108	45	43	
4	292	176	152	
5	589	443	366	
6	1070	867	686	21% decreas

 Improved graph model shows significant improvement over FErari

Graph Model Results - 3D Laplace Equation

	Unoptimized	Graph	
Order	MAPs	MAPs	
1	21	17	
2	177	79	
3	789	342	
4	2586	1049	← 59% decrease
5	7125	3592	
6	16749	8835	

Again graph model requires significantly fewer
 MAPs than unoptimized algorithm

Graph Model Results - 3D Laplace Equation

	Unoptimized	FErari	Graph	
Order	MAPs	MAPs	MAPs	
1	21	_	17	
2	177	101	79	22% decrease
3	789	370	342	
4	2586	1118	1049	
5	7125	_	3592	
6	16749	_	8835	

Again graph model requires significantly fewer
 MAPs than FErari

Limitation of Graph Model

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 4 & 4 & 4 \\ 0 & 0 & 2 & 2 \\ 2 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

$$\mathbf{r_2} = 2\mathbf{r_3} + 2\mathbf{r_4} \Rightarrow y_2 = 2y_3 + 2y_4$$

- Edges connect 2 vertices
- Can represent only binary row relationships
- Cannot exploit linear dependency of more than two rows
- Thus, hypergraphs needed

Hypergraph Model

- Same edges (2-vertex hyperedges) as graph model
- Additional higher cardinality hyperedges for more complicated relationships
 - Limiting to 3-vertex linear dependency hyperedges for this talk

Hypergraph Model

- Extended Prim's algorithm to include hyperedges
- Polynomial time algorithm
- Solution not necessarily a tree
 - $-\{IP,1,3,5\}$
 - $-\{IP,2,4,5\}$
- · No guarantee of optimum solution

Hypergraph Model Results - 2D Laplace Equation

Order	Unoptimized MAPs	Graph MAPs	HGraph MAPs
1	10	7	6
2	34	14	14
3	108	43	43
4	292	152	150
5	589	366	363
6	1070	686	686

- Hypergraph solution slightly better for some orders but not significantly better
- Graph algorithm solution close to optimal?
 - 3 Columns
 - Binary relationships may be good enough

Hypergraph Model Results - 3D Laplace Equation

	Unoptimized	Graph	HGraph	
Order	MAPs	MAPs	MAPs	
1	21	17	17	
2	177	79	68	
3	789	342	297	
4	2586	1049	852	19% additional
5	7125	3592	3261	decrease
6	16749	8835	8340	

 Hypergraph solution significantly better than graph solution for many orders

Future Work: New Hypergraph Method(s)

- Greedy modified Prim's algorithm yields suboptimal solutions for hypergraphs
- Want improved method that yields better (or optimal) solutions
 - -Improved solution
 - -Optimality of greedy solution
- First approach: integer programming method
 - -Express valid hypergraph solution more formally
 - -Exponential number of variables/constraints discouraging
- · New approach: formulate as vertex ordering

Future Work: Vertex Ordering Method

- Order vertices
 - -Roughly represents order of calculation for entries
- For given ordering, can determine optimal solution subhypergraph!
 - -Greedy algorithm of selecting cheapest available hyperedge
 - -Fast
- Ordering is challenging part
 - Traversal of greedy solution good starting point
 - -Local refinement on starting point
- · Develop global ordering method

Future Work: Hyperedge Detection/Construction

- Hyperedge detection/construction is bottleneck
- Currently brute force operation (nested loops)
 - -e.g. O(n³) calls to coplanar detection kernel for n rows
- · Detection kernel: originally SVD, now hybrid

Matrix	\mathbf{n}	Orig Time (s)	Hybrid Time (s)
2DP5	231	9.1	1.4
2DP6	406	50.8	4.8
3DP3	210	4.8	0.4
3DP4	630	115.4	7.3
3DP5	1596	1921.9	117.5
3DP6	3570	26510.9	1248.2

- Improvement over brute force method
 - -Better complexity than $O(n^3)$

Future Work: Hyperedge Pruning

- Hyperedge explosion
 - Over 10 million hyperedges for FE matrices
 - Hypergraphs too large to fit on one processor
- · Most hyperedges won't be in optimal solution
- Want to prune as many as possible
- For example, currently prune
 - Hyperedge if weight greater or equal than number of nonzeros for all involved vertices
 - Coplanar (3 V) hyperedge if two of rows are collinear
- Need additional pruning heuristics
 - One possibility: use graph solution

Future Work: Miscellaneous

- Runtime of resulting operations
 - Preliminary studies show slight improvement
 - Not as good as MAP improvement
 - More complete study necessary
- Better instruction ordering
 - Currently do naive traversal of solution subgraph
 - Can do something more clever/cache-friendly
 - Solution is dependency graph

Sparse Matrix Partitioning

- Work with Dr. Erik Boman (SNL)
 - CSCAPES Institute
- Researched and developed two new two-dimensional methods
- If successful, will be implemented as part of new matrix partitioning suite in Zoltan

Parallel Sparse Matrix-Vector Multiplication

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 5 & 1 & 9 & 0 & 5 & 0 & 0 & 0 \\ 0 & 8 & 1 & 7 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 7 \\ 0 & 0 & 0 & 0 & 1 & 8 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 & 3 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 3 \\ 1 \\ 4 \\ 2 \\ 1 \end{bmatrix}$$

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

- Partition matrix nonzeros
- Partition vectors

Objective

- · Ideally we minimize total run-time
- Settle for easier objective
 - Work balanced
 - Minimize total communication volume
- · Can partition matrices in different ways
 - 1-D
 - 2-D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph

1-D Partitioning

Each process
 assigned nonzeros
 for set of columns

Each process
 assigned nonzeros
 for set of rows

When 1-D Partitioning is Inadequate

"Arrowhead" matrix
n=12
nnz=34 (18,16)
volume = 9

- For any 1-D bisection of nxn arrowhead matrix:
 - nnz = 3n-2
 - Volume $\approx (3/4)$ n
- · O(k) volume partitioning possible

2-D Partitioning

- More flexibility in partitioning
- · No particular part for given row or column
- More general sets of nonzeros assigned parts

- Fine-grain hypergraph model
 - Ultimate flexibility
 - Assign each nz separately
- Corner symmetric partitioning method
- · Graph model for symmetric 2-D partitioning
- Nested dissection symmetric partitioning method

- · Catalyurek and Aykanat (2001)
- Nonzeros represented by vertices in hypergraph

 Rows represented by hyperedges

Columns
 represented by
 hyperedges

· 2n hyperedges

k=2, volume = cut = 2

- Partition vertices into k equal sets
- For k=2
 - Volume = number of hyperedges cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem than 1-D

New 2-D Method: "Corner" Symmetric Partitioning

 Optimal partitioning of arrowhead matrix suggests new partitioning method

· 1-D parts reflected across diagonal

 Take lower triangular portion of matrix

 1-D (column) hypergraph partitioning of lower triangular matrix

 Reflect partitioning symmetrically across diagonal

Optimal partitioning

Comparison of Methods -- Arrowhead Matrix

k	1D column	Corner	Fine grain
2	29101	2*	2*
4	40001	6*	6*
16	40012	30*	30*
64	40048	126*	126*

•
$$nnz = 119,998$$

· Communication volume for 3 methods

*optimal

Preliminary Results

Name	N	nnz	nz/N	$nz/(N)^2$
cage10	11,397	150,645	13.2	1.16×10^{-3}
finan512	74,752	596,992	8.0	1.07×10^{-4}
bcsstk30	28,924	2,043,492	70.7	2.44×10^{-3}
asic680ks	682,712	2,329,176	3.4	5.00×10^{-6}

- Symmetric matrices
- First 3 from Professor Rob Bisseling's (Utrecht University) Mondriaan paper
- · Last from Sandia Xyce circuit simulation
- · Hypergraph partitioning for all methods
 - Zoltan with PaToH

Preliminary Results: Communication Volume

Name	k	1d hyp.Col	fine-grain hyp.	corner
cage10	2	2308.2	1879.6	1866.6
	$\mid 4 \mid$	5379.0	4063.7	4089.3
	16	12874.5	$\boldsymbol{8865.5}$	8920.9
	64	23463.3	$\boldsymbol{16334.7}$	17164.0
finan512	2	147.8	126.1	100.0
	4	295.7	261.2	215.0
	16	1216.7	1027.4	845.0
	64	9986.0	8624.6	8135.2
bcsstk30	2	605.6	662.6	618.5
	4	1794.4	1935.7	1531.0
	16	8624.7	9774.8	7232.2
	64	23308.0	25677.2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
asic680ks	2	1543.5	686.6	936.9
	$\mid 4 \mid$	3560.4	1813.3	2214.2
	16	9998.5	$\boldsymbol{4634.0}$	5562.8
	64	21785.8	$\boldsymbol{9554.9}$	11147.3

Future Work: Reordering

- · Ordering not advantageous in 1D methods
 - Same graphs/hypergraph models
- Corner method partitioning quality depends greatly on ordering
 - -Ordering impacts off-diagonal nz partitioning
- Symmetric reordering to further reduce communication
- Focus on bisection
 - -Recursive bisection for k>2

Reordering (Bisection)

- · Graph model G(V,E)
 - Vector entries represented by vertices
 - Off-diagonal nonzeros represented by edges
 - Each vertex v_i assigned part s_i and position π_i
- v_i "costs" 2 words of communication iff

$$\exists v_j : (v_i, v_j) \in E, s_i \neq s_j, \pi_i > \pi_j$$

• v_i "free" otherwise

Reordering (Bisection)

• v_i "costs" 2 words if

$$\exists v_j : (v_i, v_j) \in E, s_i \neq s_j, \pi_i > \pi_j$$

Reordering (Bisection)

- Ideally find optimal partitioning/ordering
 - Very difficult combinatorial problem
- Instead we propose
 - Fix ordering, partition
 - Corner method
 - Fix vertex partitioning, find optimal ordering
- Can iterate two steps
- Need to find optimal vertex ordering given fixed vertex partitioning
 - -Divide graph into 3 categories of vertices

 Interior vertices: not adjacent to any vertex owned by different part

 Boundary vertices: adjacent to at least one vertex owned by different part

- Bipartite graph obtained by
 - Removing interior vertices
 - Removing non-cut edges

- · Minimum vertex cover of bipartite graph
 - Cover boundary vertices

Non-cover boundary vertices

- · 3 Categories
 - Interior vertices
 - Non-cover boundary vertices
 - Cover boundary vertices

Reordering (Bisection): Ordering Interior V

- v_i "costs" if $\exists v_j: (v_i,v_j) \in E, s_i
 eq s_j, \pi_i > \pi_j$
- Interior vertices can be given any position with no affect on volume
 - Since adjacent vertices have same part
 - Position these first

Reordering (Bisection): Ordering Other V

- v_i "costs" if $\exists v_j: (v_i,v_j) \in E, s_i
 eq s_j, \pi_i > \pi_j$
- · Find ordering of remaining V such that
 - Minimum set of vertices result in communication
 - Equivalently, minimum set of vertices such that for each edge in bipartite graph, vertex with larger numbered position is contained in this set
 - Minimum vertex cover gives us this set
 - With cover vertices ordered last
- · Order cover boundary vertices last

Reordering (Bisection): Resulting Matrix

· Only cover boundary vertices "cost"

Graph Model for Symmetric 2-D Partitioning

- · Given symmetric matrix A
- Symmetric partition
 - a(i,j) and a(j,i) assigned same partition
 - Input and output vectors have same distribution
- Corresponding graph G(V,E)
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- Corresponding graph G(V,E)
 - Vertices correspond to vector elements
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2-D Partitioning

- · Symmetric 2-D partitioning
 - Partition both V and E
 - Gives partitioning of both matrix and vectors

Communication in Graph Model

- Communication is assigned to vertices
- Vertex incurs communication iff incident edge is in different part
- Want small vertex separator -- S={V₈}

Nested Dissection Partitioning Method - Bisection

- Suppose A is symmetric
- Let G(V,E) be graph of A
- Find small, balanced separator S
 - Yields vertex partitioning V = (VO,V1,S)
- Partition the edges
 - E0 = {edges that touch a vertex in VO}
 - E1 = {edges that touch a vertex in V1}

Nested Dissection Partitioning Method - Bisection

- Vertices in S and corresponding edges
 - Can be assigned to either partition
 - Can use flexibility to maintain balance
- Communication Volume = 2*|5|
 - Regardless of S partitioning
 - |S| in each phase

Nested Dissection Partitioning Method

- Recursive bisection to partition into >2 partitions
- Use nested dissection!

Preliminary Numerical Experiments

- Compared 3 methods
 - 1-D hypergraph partitioning
 - Fine-grain hypergraph partitioning
 - Nested dissection partitioning
- Hypergraph partitioning for all methods
 - Zoltan with PaToH
- Symmetric and nonsymmetric matrices
 - Mostly from Prof. Rob Bisseling (Utrecht Univ.)
- k = 4, 16, 64 partitions

Communication Volume - Symmetric Matrices

Runtimes

Nonsymmetric Matrices

- · Given nonsymmetric matrix A
- Construct bipartite graph G'(R,C,E)
 - R vertices correspond to rows, C vertices to columns
 - E correspond to nonzeros
 - Can be represented by symmetric adjacency matrix

- Apply nested dissection approach to G'
 - Use same algorithm as for symmetric case

Communication Volume - Nonsymmetric Matrices

Messages Sent (or Received) per Process

Summary of Nested Dissection Method Results

- New nested dissection 2-D algorithm
 - Implemented using existing algorithms and software
 - Quality better than 1-D, and similar to fine-grain hypergraph method for many matrices
 - Faster to compute than fine-grain hypergraph
 - Fewer messages than fine-grain hypergraph

Progress: Serial Matrix-Vector Multiplication (1)

- Improved hypergraph algorithm
 - Develop vertex ordering algorithm

Progress: Serial Matrix-Vector Multiplication (2)

- Hyperedge pruning
 - Develop one or two more heuristics
 - One based on MST graph solution

Progress: Serial Matrix-Vector Multiplication (2)

- Hyperedge detection
 - Need to improve $O(n^3)$ looping (for coplanar)
- Operation ordering
 - More cache friendly ordering

Progress: Sparse Matrix Partitioning (1)

- Corner reordering
 - Implement proposed method
- Nested dissection approach
 - Improve partitioning of separator vertices/edges

Progress: Sparse Matrix Partitioning (2)

- Nonsymmetric matrices
 - Corner method
 - Improve nested dissection approach to nonsymmetric

Progress: Sparse Matrix Partitioning (2)

- Other communication metrics
 - Messages
- Numerical experiments
 - Larger matrices

Acknowledgements/Thanks

- Professor Michael Heath,
 - Advisor
- Dr. Erik Boman, Sandia National Laboratories
 - Summer technical advisor
 - Collaborator on partitioning work
 - Suggested serial matrix-vector optimization problem, hypergraphs, etc.
- · Dr. Bruce Hendrickson, Sandia
 - Corner method ordering
 - Suggested vertex-ordering for serial opt. problem
- Professor Robert Kirby, Texas Tech University
 - Serial matrix-vector optimization/FErari discussions

Acknowledgements/Thanks

- Professor Luke Olson
 - Help with FE code to generate matrices
- Professor Jeff Erickson
 - Discussion about serial optimization problem
 - Suggested vertex-ordering
 - Hyperedge detection
- Professor William Gropp
 - Discussion about serial optimization problem
- Funding sources
 - DOE CSGF (Krell Institute)
 - CSCAPES
 - Professor Heath's Fulton Watson Copp Chair